1) Identify which of these functions are one-to-one and onto by CIRCLING the functions that are one-to-one and BOXING the ones that are onto.

- (a) $f_1(x) = 2x + 3$ with domain \mathbb{R} and codomain \mathbb{R} .
- (b) $f_2(x) = 2x + 3$ with domain \mathbb{Z} and codomain \mathbb{Z} .
- (c) $f_3(x) = x^2$ with domain \mathbb{R} and codomain \mathbb{R} .
- (d) $f_4(x) = x^2$ with domain \mathbb{Z} and codomain \mathbb{Z} .
- (e) $f_5(x) = \lfloor x \rfloor$ with domain \mathbb{R} and codomain \mathbb{Z} .
- 2) Define the numbers $c_0, c_1, c_2, c_3, c_4, \dots$ via $c_0=1$ and $c_n=c_{\left\lfloor\frac{n}{3}\right\rfloor}+\frac{4}{3}$. Prove, using strong induction, that $c_n<2n$ for all $n\geq 1$.